The analog modeling lab in the Department of Earth Sciences has been designed as a resource for teaching and research. Analog modeling can give us qualitative and quantitative insights into boundary conditions and material behavior. The experiments allow us to investigate the individual effects of different parameters or geological processes. Analog materials are weak enough to deform rapidly under laboratory conditions and they have rheologies which are scalable to Earth systems. Several analog materials and model approaches exist. Brittle behavior in rocks is modeled by granular materials (such as sand), which deforms in a way described by a pressure-dependent, elastic-plastic constitutive relationship. The viscous behavior of rocks is simulated by viscous materials such as silicone putty, honey and glucose syrup. The rheology of these materials is commonly temperature dependent and can be described by a power law constitutive relationship. Plastic material, such as plasticine and wax are also used to model rock deformation. Please go to the Projects link above to see examples of how we are using this facility in research and teaching.